3.225 \(\int \frac {(a+a \sec (c+d x))^3 (A+C \sec ^2(c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=259 \[ \frac {4 a^3 (5 A+21 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d}-\frac {2 (5 A-9 C) \sin (c+d x) \sqrt {\sec (c+d x)} \left (a^3 \sec (c+d x)+a^3\right )}{15 d}+\frac {4 a^3 (5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^3 (5 A-9 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}-\frac {2 (5 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} \left (a^2 \sec (c+d x)+a^2\right )^2}{15 a d}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^3}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2/3*A*(a+a*sec(d*x+c))^3*sin(d*x+c)/d/sec(d*x+c)^(1/2)+4/15*a^3*(5*A+21*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-2/15*
(5*A-3*C)*(a^2+a^2*sec(d*x+c))^2*sin(d*x+c)*sec(d*x+c)^(1/2)/a/d-2/15*(5*A-9*C)*(a^3+a^3*sec(d*x+c))*sin(d*x+c
)*sec(d*x+c)^(1/2)/d+4/5*a^3*(5*A-9*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1
/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a^3*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+
1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.56, antiderivative size = 259, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4087, 4018, 3997, 3787, 3771, 2639, 2641} \[ \frac {4 a^3 (5 A+21 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d}-\frac {2 (5 A-9 C) \sin (c+d x) \sqrt {\sec (c+d x)} \left (a^3 \sec (c+d x)+a^3\right )}{15 d}-\frac {2 (5 A-3 C) \sin (c+d x) \sqrt {\sec (c+d x)} \left (a^2 \sec (c+d x)+a^2\right )^2}{15 a d}+\frac {4 a^3 (5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^3 (5 A-9 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^3}{3 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(4*a^3*(5*A - 9*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^3*(5*A + 3*C)
*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (4*a^3*(5*A + 21*C)*Sqrt[Sec[c + d*x
]]*Sin[c + d*x])/(15*d) + (2*A*(a + a*Sec[c + d*x])^3*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) - (2*(5*A - 3*C)*
Sqrt[Sec[c + d*x]]*(a^2 + a^2*Sec[c + d*x])^2*Sin[c + d*x])/(15*a*d) - (2*(5*A - 9*C)*Sqrt[Sec[c + d*x]]*(a^3
+ a^3*Sec[c + d*x])*Sin[c + d*x])/(15*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3997

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*(n + 1)), x] + Dist[1/(n + 1), Int[(d*C
sc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f
, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 4018

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*(m + n
)), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d*n
) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && Ne
Q[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4087

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 A (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \int \frac {(a+a \sec (c+d x))^3 \left (3 a A-\frac {1}{2} a (5 A-3 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{3 a}\\ &=\frac {2 A (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2 (5 A-3 C) \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{15 a d}+\frac {4 \int \frac {(a+a \sec (c+d x))^2 \left (\frac {1}{4} a^2 (35 A-3 C)-\frac {3}{4} a^2 (5 A-9 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{15 a}\\ &=\frac {2 A (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2 (5 A-3 C) \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{15 a d}-\frac {2 (5 A-9 C) \sqrt {\sec (c+d x)} \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d}+\frac {8 \int \frac {(a+a \sec (c+d x)) \left (\frac {3}{2} a^3 (10 A-3 C)+\frac {3}{4} a^3 (5 A+21 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{45 a}\\ &=\frac {4 a^3 (5 A+21 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2 (5 A-3 C) \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{15 a d}-\frac {2 (5 A-9 C) \sqrt {\sec (c+d x)} \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d}+\frac {16 \int \frac {\frac {9}{8} a^4 (5 A-9 C)+\frac {15}{8} a^4 (5 A+3 C) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{45 a}\\ &=\frac {4 a^3 (5 A+21 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2 (5 A-3 C) \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{15 a d}-\frac {2 (5 A-9 C) \sqrt {\sec (c+d x)} \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d}+\frac {1}{5} \left (2 a^3 (5 A-9 C)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (2 a^3 (5 A+3 C)\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {4 a^3 (5 A+21 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2 (5 A-3 C) \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{15 a d}-\frac {2 (5 A-9 C) \sqrt {\sec (c+d x)} \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d}+\frac {1}{5} \left (2 a^3 (5 A-9 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^3 (5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {4 a^3 (5 A-9 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^3 (5 A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {4 a^3 (5 A+21 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A (a+a \sec (c+d x))^3 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2 (5 A-3 C) \sqrt {\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right )^2 \sin (c+d x)}{15 a d}-\frac {2 (5 A-9 C) \sqrt {\sec (c+d x)} \left (a^3+a^3 \sec (c+d x)\right ) \sin (c+d x)}{15 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.96, size = 255, normalized size = 0.98 \[ \frac {a^3 e^{-i d x} \sec ^{\frac {5}{2}}(c+d x) (\cos (d x)+i \sin (d x)) \left (-4 i (5 A-9 C) e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{5/2} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+80 (5 A+3 C) \cos ^{\frac {5}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+30 A \sin (c+d x)+10 A \sin (2 (c+d x))+30 A \sin (3 (c+d x))+5 A \sin (4 (c+d x))+180 i A \cos (c+d x)+60 i A \cos (3 (c+d x))+132 C \sin (c+d x)+60 C \sin (2 (c+d x))+108 C \sin (3 (c+d x))-324 i C \cos (c+d x)-108 i C \cos (3 (c+d x))\right )}{60 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(a^3*Sec[c + d*x]^(5/2)*(Cos[d*x] + I*Sin[d*x])*((180*I)*A*Cos[c + d*x] - (324*I)*C*Cos[c + d*x] + (60*I)*A*Co
s[3*(c + d*x)] - (108*I)*C*Cos[3*(c + d*x)] + 80*(5*A + 3*C)*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2] - ((
4*I)*(5*A - 9*C)*(1 + E^((2*I)*(c + d*x)))^(5/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*
(c + d*x)) + 30*A*Sin[c + d*x] + 132*C*Sin[c + d*x] + 10*A*Sin[2*(c + d*x)] + 60*C*Sin[2*(c + d*x)] + 30*A*Sin
[3*(c + d*x)] + 108*C*Sin[3*(c + d*x)] + 5*A*Sin[4*(c + d*x)]))/(60*d*E^(I*d*x))

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {C a^{3} \sec \left (d x + c\right )^{5} + 3 \, C a^{3} \sec \left (d x + c\right )^{4} + {\left (A + 3 \, C\right )} a^{3} \sec \left (d x + c\right )^{3} + {\left (3 \, A + C\right )} a^{3} \sec \left (d x + c\right )^{2} + 3 \, A a^{3} \sec \left (d x + c\right ) + A a^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*a^3*sec(d*x + c)^5 + 3*C*a^3*sec(d*x + c)^4 + (A + 3*C)*a^3*sec(d*x + c)^3 + (3*A + C)*a^3*sec(d*x
 + c)^2 + 3*A*a^3*sec(d*x + c) + A*a^3)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 15.26, size = 939, normalized size = 3.63 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x)

[Out]

-4/15*a^3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2
*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^3*(-40*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+60*A*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2
*c)^4-100*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2
)*sin(1/2*d*x+1/2*c)^4+120*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-108*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-60*C*EllipticF(cos(1/2*d
*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4+216*C*co
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-60*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+100*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-90*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^4+108*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)
)*sin(1/2*d*x+1/2*c)^2+60*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-246*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+15*A*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-25*A*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+20*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x
+1/2*c)^2-27*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2))-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
72*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*
d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^3)/(1/cos(c + d*x))^(3/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^3)/(1/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**3*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________